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Correlation Inequalities for Non-Purely-Ferromagnetic 
Systems 
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Correlation inequalities are proven for spin systems with non-purely- 
ferromagnetic interactions possessing a certain symmetry. These inequali- 
ties generalize well-known inequalities of Griffiths, Ginibre, Lebowitz, 
Schrader, Messager-Miracle-Sole, and Percus. 
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1. I N T R O D U C T I O N  

In classical statistical mechanics correlation inequalities can be successfully 
applied to study questions related to translation invariance31,2~ The con- 
jectured nonexistence of nontranslation-invariant states in the classical Z 2 
Ising model could be a consequence of a correlation inequality which has 
been proven for a class of  boundary conditions in Ref. 2. By a simple trans- 
formation this inequality can be written in a more symmetric form at the 
cost of introducing nonferromagnetic interactions. However, under certain 
symmetry conditions we are able to derive correlation inequalities for inter- 
actions that are not purely ferromagnetic and it is hoped that they give 
insight into nontranslation-invariant states. For  example, they give a new 
proof  of the results of Ref. 2, although they are unable to broaden the 
aforementioned class of boundary configurations. 

Our inequalities are formulated in Section 2 and proven in Section 4. 
The motivation for this work is briefly described in Section 3. 
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2. THE INEQUALITIES 

Let A, A* be disjoint finite sets and cp: A ---> A* a bijection. Let Fo(A) = 
{e: e is a function A--->Z+}, i.e., Fo(A) contains all "subsets"  of A with 
possibly repeated elements. For  e ~ Fo(A) denote Jel = Z,~A e,. Throughout 
the paper the ranges of the variables i , j  .... and K, A, B .... will be A and 
Fo(A ), respectively, and the same variables will also denote the images of 
these objects under cp. 

On the set M = A u A* we consider the continuous spin variables a~, 
a~* e R 1, where or, and a** are the spins at the sites i and ~0(i). 

Let v~ be symmetric measures on L = [ - a , a ]  (0 < a ~< ~) ,  i.e., 
dv~(x) = dv i ( -x )  (i ~ A). If  U(a x a*) is the energy of the configuration 
a x a* = {~,} • {crj} and f :  a • ~* --> R 1 is arbitrary, then ( f )  denotes the 
expectation value 

( f )  = Z - l (  f ( a  • a * ) e x p [ - U ( a  • a*)]l-~dvi(a,)dv,(~r,* ) 
JL 21A[ i~A 

For  a < oo denote by C(L TM) the algebra of real, continuous functions 
on L TM supplied by the supremum norm. For  S c C(LaAI) let Q(S) be the 
closed, convex, multiplicative cone spanned by S (cf. Ref. 3) and f ix 'S = 
{m: i ~ A). In case a = oo, Qo(S) will denote the convex multiplicative cone 
spanned by S in the (nonnormed) algebra of measurable functions 
Rim --> R x. 

We will consider polynomial interactions of the form 

- U(a • a*) = ~,  (SKa K + JK*a *s + nsa~:a *r) (1) 
KeF0(A) 

where the sum is a finite one and aK = 1-~,~: a~,. 
If  a -- ~ ,  then to ensure the convergence of the integrals we suppose that 

the tails of v, decay sufficiently rapidly, that is, if d is the degree of the 
polynomial (1), then (see Ref. 1 l) 

j exp(blslgdv~(s) < oo V b e R  1 (2) 
R1 

Theorem 1. IfJK t> [JK*I and LK is arbitrary, then 

A(a*)]x3 /> 0 + 
/ 

for any N/> 1,fk e Qo(S) [also forfk ~ Q(S) i f a  < oo], and arbitrary choice 
of signs. 

In the case a = oo, the validity of Theorem 1 can of course be extended 
to functions fk in the closure of Qo(S) in a suitable chosen L~ space. 
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Int roduce the "dup l i ca t e "  variables: 

t, = 2-1/2((r, + ~**) and q~ = 2-~/2(~ - a**) (3) 

implying that  m = 2-~Je(t~ + q,) and cq* = 2-*J2(ti - q,). 

Corollary. I f 0  < a ~< ~ ,  then for  any A, B ~ F0(A): 

O) <tAq B) >10. 
(ii) <ea> > 0. 

(iii) <aA~ B) >I (~A~*B). 
( iv )  (&A&B) __ (&*Ao.*B) > ](~A&gB.~ __ <&*Af~B)[ ~ O. 

These statements generalize the Ginibre inequality, m) the first G K S  in- 
equality, (4,s) the Schrader-Messager-Miracle-Sole  inequality, (2'm and the 
new Lebowitz inequality, (7'~ which implies an inequality of  Griffiths. <9~ A 
generalization of  the Percus inequality (~o) can also be given. 

Theorem 2. I f  0 ~< a < oo and the interaction is given by 

t#3" i K 

with J~y t> 0, h, /> hi*, and the last sum is a finite one, then for any A ~ Fo(A) 

(qA) >/ 0 

Finally, we formulate  a completely new inequality. 

Theorem 3. I f  v~ = 1/28_~ + 1/28, and the energy is given by 

- u ( ~  • ~*) = ~ , , ( . , ~ ,  + -i*~,*) + ~ L,~i~,* + ~ (h,., + e,*<*) 

with J,y /> O, L, arbitrary,  and we consider two sets of  external fields h = 
{h~, hi* : i ~ A} and ~ = {hi, ~* :  i e A} satisfying the inequalities 

~,- ~i* > lh t -  h,*l, Ih, + ai*l ~ hi + h,*, Vi ~ h 

then for any A, B ~ F0(A) 

( tA)~/( tA) ~ <~ <q~>~/<q~)~ 

3. CONNECTION WITH TRANSLATION INVARIANCE 

Let  A be a finite subset o f  Z a symmetric with respect to the line x 1 = 
- 1/2. In Ref. 2 the inequality 

((cq + cr~)(~j + crj))a'bA /> <(~{ + ~,)(~j + crj)) A'• (4) 
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has been conjectured for the classical spin--} Ising model ( i , j  ~ A; i l , j  ~ >I O) 
with formal interaction -U(cr) =/3 ~l~-Jl=~ oh% (/3 >1 0). In this inequality 

denotes the site symmetric to i with respect to the line x ~ = - 1 / 2  and 
('-')A'ba denotes the expectation with respect to the Gibbs distribution 
PA'bA corresponding to an arbitrary boundary configuration bA (i.e., 
bA: OA--->{-1, +1}, OA = { j : j ~ Z  a - A, 3 i ~ A ,  such that li - j [  = 1}, 
while + denotes the boundary configurations equal to sgn(i ~ + 1/2) for 
i = (il,..., i a) E ~A. 

For d = 2 it has been shown by Gallavotti (~2) and Abraham and Reed (18) 
that the infinite Gibbs state P ~ = limA~z2 pA,* is translation invariant, 
namely P ~ = 1/2P - + 1/2P § This fact and the inequality (4) would imply 
the famous conjecture that G(/3) = G~(/3) for every fl/> 0, i.e., no non- 
translation-invariant states exist (d = 20. 

In Ref. 2, (4) has been proven for the class of boundary configurations 
satisfying b, + b~ >/ 0 for every i ~ ~A with i ~ >/ 0 and this result has enabled 
the authors to prove the translation invariance of a certain class of infinite 
Gibbs states. It is easy to see that the same result is a consequence of our 
Theorem 3. We remark that from Theorem 3 it also follows that for the 
boundary configurations described above 

(ai - cr,)A'~^ <~ (e, - ~r~) A" * (i e A,  i 1 >>- O) (5) 

This inequality, if it is true for arbitrary boundary configurations, would 
imply the translation invariance of the one-point correlation (oh) P of any 
P E a(/3). 

By multiplying all the spins by sgn(i 1 + 1/2), the inequalities (5) and 
(4) go over into 

(or, + c~)A,b,~ ~< (cr~ + cry) a'+ 

<( , , ,  _ , , , ) ( , , j  _ e ) > A , ~ A  >/ < ( , , , _  " , ) 6 ' ;  - -  "~)>~'  + (6) 

being understood for the interaction 

-U(c r )= /3  ~ (ch%+(r~cr~)- fl ~ a, cr~ + fl ~ (a,bj+a~b,)  
l i - j l = l  l t - f l = l  I ~ - '  = 1  
i l , j 1 ~ 0  l l , j l~>0 

We expect that the inequalities (4) and (5) can be more easily attacked in 
their more symmetric forms (6), though for the time being we do not have 
positive results. 
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4. PROOFS 

We manifest the inequalities by the method of duplicate variables. (~~ 

Proof  of  Theorem 1 

I .emma 1. Suppose that dtz(t,q) is a measure on R 2~ with the 
symmetries dlz(t, q) = dl~(kt, q) = dtz(t, kq) (t, q ~ R ~, 1 <~ k <~ s), where 
k(xl,..., x~) = (xl .... , x~_ 1, - xk, xk+l .... , x~). Then 

S 

2~ ~ (t~,q~,) dtz(t, q) >1 0 (mz, nz ~ Z +) 

Proof of Lemma I. If any of the m~ or n~ is odd, then the integral 
vanishes by the symmetries of ~. Otherwise the integrand is nonnegative. 

It is sufficient to prove (2) for f~  e S (1 ~< k ~< N). In this case (2) 
reduces to inequality (i) of the Corollary. Its LHS is 

where 

[t~ + q,~ 
dp~(t,, q,) = a v , ~ ]  d v , ( ~ )  

is a measure on R z. The first exponent can be expanded in a power series 
with positive coefficients and the measure 

possesses the symmetries required by the previous lemma. 
Statements (ii)-(iv) of the Corollary follow from 

~A [t + q~A 

CrA0rB _ cr.B ) = {t + q'] a [ [ t  + q~8 

(~ +--(r*a)(aB-T-~ = [ ( t  + q]aL\---~! + ( t _ _ ~ ) A ] [ ( ~ q ) n  -T- ( ~ ) n ]  
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P r o o f  o f  T h e o r e m  2 

The energy expressed in the new variables is 

- { ~  J,,(htj + q~q,) + 2-~I2 ~ [(h, + h~*)h + (h, - h,*)qd 

When calculating (qA), the factor 

exp~ ~ J,,q,q, + 2-~'2 ~ (h~-  h,*)q~} 
k ' r  

can be expanded in a power series with positive coefficients; thus it is 
sufficient to show that 

f q B e x p [ , ~ J J d , +  2-~/2 ~(h~ + h~*)h 

c~ " 7 q~]q +~ ( 2 ] ]~dMh'qJ=f q~&(t'q) 
is nonnegative for any h: i ~ A. This can be seen, however, by using the 
symmetry dl~(t, q) = dl~(t, ~q) analogously as in Lemma 1. 

Proof of Theorem 3 

The result can be obtained by a second duplication, introducing another 
copy of A to A*, Which will be denoted by A to A*. Thus to any variable on 
A to A* there corresponds a unique variable on A to A* that will be de- 
signated by a tilde. For any i e A we introduce the variables ~i = 2-1/2(h + g,), 
fi~ = 2-~I2(h - ~), y, = 2-1t2(q, + gk), and 8 ~ = 2 - 1 / 2 ( q , - q 0 .  Let the 
energy on A to A* to A to A* be 

- { ~  s,,(~, + ~,*~,* + o#, + <%*) + ~ L,(~,~** + ~,*) 

+ E (h,,, + h,,o,, + + 

or in terms of the variables ~, B, 7, and 8 

-{~J~j(cq% + fl,SJ + yd'j + 8,83 + (1/2)~,L,(~, = + ~2 _ 7= + 8=) 

+ 0 / 2 )  ~ [~,(h, + h,* + a, + a,*) +/~,(h, + h,* - h, - h,*) 

+ r,(h, - h,* + ~, - a,*) + a , ( - h ,  + h,* + h, - h,*)]} 

Since 

~ ?  + B?  - y 2  _ a ?  = 4 - 2(~,? + a? )  = 2 ( ~ ?  + / ~ ? )  - 4 
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we can always find such a representation o f  the sum in brackets where, except 
for  the constant  term, all the coefficients are nonnegative. 

The theorem states that  in this new system 

i.e., 

( t ~  B -  t ~  B) ~ 0 

This inequality, however, comes from an Ellis-Monroe type inequality 
(aAflB~'c~ D) >>I 0 that  can be proven for  our  potential  in the usual way. (11> 
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